Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions and Answers.
BSEB Bihar Board Class 10 Maths Solutions Chapter 5 समांतर श्रेढ़ियाँ Additional Questions
Bihar Board Class 10 Maths समांतर श्रेढ़ियाँ Additional Questions
बहुविकल्पीय प्रश्न
प्रश्न 1.
किसी A.P. में, यदि d = -4, n = 7 और an = 4 है, तो a का मान है
(i) 6
(ii) 7
(iii) 20
(iv) 28
हल
(iv) 28
प्रश्न 2.
किसी A.P. में, यदि a = 3.5, d = 0 और n = 101 है, तो, an बराबर है
(i) 0
(ii) 3.5
(iii) 103.5
(iv) 104.5
हल
(ii) 3.5
प्रश्न 3.
संख्याओं -10, -6, -2, 2,….की सूची
(i) d = -16 वाली एक A.P. है
(ii) d = 4 वाली एक A.P. है
(iii) d = -4 वाली एक A.P. है
(iv) एक A.P. नहीं है
हल
(iii) d = 4 वाली एक A.P. है।
प्रश्न 4.
A.P.: -5, \(\frac{-5}{2}\), 0, \(\frac{5}{2}\),…… का 11वाँ पद है
(i) -20
(ii) 20
(iii) -30
(iv) 30
हल
(ii) 20
प्रश्न 5.
उस A.P., जिसका प्रथम पद -2 और सार्वान्तर -2 है के प्रथम चार पद हैं
(i) -2, 0, 2, 4
(ii) -2, 4, -8, 16
(iii) -2, -4, -6, -8
(iv) -2, -4, -8, -16
हल
(iii) -2, -4, -6, -8
प्रश्न 6.
उस A.P., जिसके प्रथम दो पद -3 और 4 हैं, का 21वाँ पद है
(i) 17
(ii) 137
(iii) 143
(iv) -143
हल
(ii) 137
प्रश्न 7.
यदि किसी A.P. का दूसरा पद 13 और 5वाँ पद 25 है, तो उसका 7वाँ पद क्या है?
(i) 30
(ii) 33
(iii) 37
(iv) 38
हल
(ii) 33
प्रश्न 8.
A.P.: 21, 42, 63, 84,… का कौन-सा पद 210 है?
(i) 9वाँ
(ii) 10वाँ
(iii) 11वाँ
(iv) 12वाँ
हल
(ii) 10वाँ
प्रश्न 9.
यदि किसी A.P. का सार्वान्तर 5 है, a18 – a13 क्या है?
(i) 5
(ii) 20
(iii) 25
(iv) 30
हल
(iii) 25
प्रश्न 10.
उस A.P. का सार्वान्तर क्या है, जिसमें a18 – a14 = 32 है?
(i) 8
(ii) -8
(iii) -4
(iv) 4
हल
(i) 8
प्रश्न 11.
दो समान्तर श्रेढ़ियों का एक ही सार्वान्तर है। इनमें से एक का प्रथम पद -1 और दसरी का प्रथम पद -8 है। तब, इनके चौथे पदों के बीच का अन्तर है
(i) -1
(ii) -8
(iii) 7
(iv) -9
हल
(iii) 7
प्रश्न 12.
यदि किसी A.P. के 7वें पद का 7 गुना उसके 11वें पद के 11 गुने के बराबर हो,तो उसका 18वाँ पद होगा
(i) 7
(ii) 11
(iii) 18
(iv) 0
हल
(iv) 0
प्रश्न 13.
A.P.: -11, -8, -5,…, 49 के अन्त से चौथा पद है
(i) 37
(ii) 40
(iii) 43
(iv) 58
हल
(ii) 40
प्रश्न 14.
यदि किसी A.P. का प्रथम पद -5 और सार्वान्तर 2 है तो उसके प्रथम 6 पदों का योग है
(i) 0
(ii) 5
(iii) 6
(iv) 15
हल
(i) 0
प्रश्न 15.
A.P.: 10, 6, 2,… के प्रथम 16 पदों का योग है
(i) -320
(ii) 320
(iii) -352
(iv) -400
हल
(i) -320
प्रश्न 16.
किसी A.P. में, यदि a = 1, an = 20 और Sn = 399 हों तो n बराबर है
(i) 19
(ii) 21
(iii) 38
(iv) 42
हल
(iii) 38
प्रश्न 17.
3 के प्रथम पाँच गुणजों का योग है
(i) 45
(ii) 55
(iii) 65
(iv) 75
हल
(i) 45
अतिलघु उत्तरीय प्रश्न
प्रश्न 1.
समान्तर श्रेढ़ी -4 + 3 + 10 +……..+ 52 में कितने पद हैं?
हल
माना समान्तर श्रेढ़ी -4 + 3 + 10 +………+ 52 में n पद हैं।
यहाँ, a = -4 तथा d = 3 – (-4) = 3 + 4 = 7
n वा पद = 52
⇒ a + (n – 1)d = 52
⇒ -4 + (n – 1)7 = 52
⇒ 7n – 7 = 52 + 4 = 56
⇒ 7n = 56 + 7 = 63
⇒ n = 9
अत: श्रेढ़ी में 9 पद हैं।
प्रश्न 2.
समान्तर श्रेढी 2, 7, 12, ……. का 20 वाँ पद निकालिए।
हल
दी हुई समान्तर श्रेढ़ी
2, 7, 12, ……
यहाँ, प्रथम पद (a) = 2, सार्वान्तर (d) = 7 – 2 = 5 तथा n = 20
n वाँ पद, an = a + (n – 1)d
20 वाँ पद, a20 = 2 + (20 – 1) 5
= 2 + 19 × 5
= 2 + 95
= 97
अत : श्रेढ़ी का 20 वाँ पद = 97
प्रश्न 3.
प्रथम दस प्राकृतिक संख्याओं का योग ज्ञात कीजिए।
हल
प्रथम दस प्राकृतिक संख्याएँ :
1, 2, 3, 4, ………., 10
यहाँ, a = 1, d = 2 – 1 = 1, तथा n = 10
S10 = \(\frac{n}{2}\) [2a + (n – 1)d]
= \(\frac{10}{2}\) [2 × 1 + (10 – 1)1]
= 5[2 + 9]
= 55
अतः प्रथम दस प्राकृतिक संख्याओं का योग = 55
प्रश्न 4.
प्रथम 1000 धन पूर्णांकों का योग ज्ञात कीजिए।
हल
प्रथम 1000 धन पूर्णांकों की सूची है :
1, 2, 3,…..,1000
यह एक समान्तर श्रेढ़ी है जिसके लिए
a = 1, d = 2 – 1 = 1, n = 1000
सूत्र Sn = \(\frac{n}{2}\) [2a + (n – 1) d] से
1000 पदों का योग, S1000 = \(\frac{1000}{2}\) [2(1) + (1000 – 1) (1)]
= 500 × 1001
= 500500
अत: प्रथम 1000 धन पूर्णांकों का योग = 500500
प्रश्न 5.
समान्तर श्रेढी,\(\frac{3}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-3}{2}\),…. के लिए प्रथम पद ‘a’ और सार्वान्तर लिखिए।
हल
दी हुई समान्तर श्रेढ़ी है :
\(\frac{3}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-3}{2}\),………
प्रथम पद (a) = \(\frac{3}{2}\)
तथा सार्वान्तर (d) = \(\frac{1}{2}-\frac{3}{2}\) = -1
प्रश्न 6.
समान्तर श्रेढ़ी 21, 18, 15, …….. का आठवाँ पद ज्ञात कीजिए।
हल
दी हुई श्रेढ़ी 21, 18, 15,……..
यहाँ प्रथम पद (a) = 21, सार्वान्तर (d) = 18 – 21 = -3
श्रेढ़ी का n वाँ पद = a + (n – 1)d
श्रेढ़ी का 8 वाँ पद = 21 + (8 – 1) (-3) = 21 – 21 = 0
अत: श्रेढ़ी का आठवाँ पद शून्य है।
लघु उत्तरीय प्रश्न
प्रश्न 1.
किसी समान्तर श्रेढी का दूसरा पद एवं पाँचवाँ पद क्रमशः 3 एवं -3 है, तो श्रेढी का सार्वान्तर एवं प्रथम पद ज्ञात कीजिए।
हल
माना श्रेढ़ी का प्रथम पद a तथा सार्वान्तर d है
श्रेढ़ी का दूसरा पद = a + d = 3 ……..(1)
पाँचवाँ पद = a + (5 – 1)d = -3
⇒ a + 4d = -3 …….(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
(a + 4d) – (a + d) = -3 – 3
⇒ a + 4d – a – d = -6
⇒ 3d = -6
⇒ d = -2
d का मान समीकरण (1) में रखने पर,
a – 2 = 3
⇒ a = 3 + 2 = 5
अतः श्रेढ़ी का सार्वान्तर -2 तथा प्रथम पद 5 है।
प्रश्न 2.
किसी समान्तर श्रेढ़ी का n वाँ पद 2n + 5 है, तो श्रेढी के सात पदों तक योगफल ज्ञात कीजिए।
हल
दिया है, समान्तर श्रेढ़ी का n वाँ पद, (an) = 2n + 5
n = 1 रखने पर, प्रथम पद, (a1) = 2 × 1 + 5 = 7
n = 2 रखने पर, दूसरा पद, (a2) = 2 × 2 + 5 = 9
n = 3 रखने पर, तीसरा पद, (a3) = 2 × 3 + 5 = 11
प्रथम पद (a) = 7, सार्वान्तर (d) = a2 – a1 = 9 – 7 = 2
सूत्र : Sn = \(\frac{n}{2}\) [2a + (n – 1)d] से,
7 पदों तक योगफल, S7 = \(\frac{7}{2}\) [2 × 7 + (7 – 1)2]
= \(\frac{7}{2}\) × 2[7 + 6]
= 7 × 13
= 91
अतः 7 पदों तक योगफल = 91
प्रश्न 3.
किसी समान्तर श्रेढ़ी का 7वाँ पद 32 और 13वाँ पद 62 है। समान्तर श्रेढी ज्ञात कीजिए।
हल
माना किसी समान्तर श्रेढ़ी का पहला पद a तथा सार्वान्तर d है।
दिया है, श्रेढ़ी का 7वाँ पद = 32
a + (7 – 1)d = 32
⇒ a + 6d = 32 ……(1)
इसी प्रकार, श्रेढ़ी का 13वाँ पद = 62
a + (13 – 1)d = 62
⇒ a + 12d = 62 ……..(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
6d = 62 – 32 = 30
d = \(\frac{30}{6}\) = 5
समीकरण (1) में d का मान रखने पर,
a + 6 × 5 = 32
⇒ a + 30 = 32
⇒ a = 32 – 30 = 2
तब, श्रेढ़ी : a, a + d, a + 2d, a + 3d,………
या 2, 2 + 5, 2 + 10, 2 + 15,………
या 2, 7, 12, 17, ………
अत: अभीष्ट समान्तर श्रेढ़ी : 2, 7, 12, 17, ……
प्रश्न 4.
समान्तर श्रेढ़ी 3, 5, 7, 9,…………, 201 का अन्तिम पद से (प्रथम पद की ओर) 15वाँ पद ज्ञात कीजिए।
हल
दी गई श्रेढ़ी 3, 5, 7, 9, …….., 201
प्रथम पद (a) = 3, दूसरा पद = 5, अन्तिम पद (l) = 201
सार्वान्तर (d) = दूसरा पद – पहला पद = 5 – 3 = 2
अन्त से nवाँ पद = l – (n – 1)d से,
n = 15 रखने पर,
अन्त से 15वाँ पद = l – (15 – 1)d (∵ l = 201)
= l – 14d
= 201 – (14 × 2)
= 201 – 28
= 173
अतः श्रेढ़ी का अन्त से 15वाँ पद = 173
प्रश्न 5.
किसी श्रेढी काn वाँ पद (2n + 1) है तो इस श्रेढी का सातवाँ (7th) पद ज्ञात कीजिए।
हल
माना समान्तर श्रेढ़ी का प्रथम पद a तथा सार्वान्तर d है।
दिया है, n वाँ पद an = 2n + 1
n = 1 रखने पर, प्रथम पद a = a1 = 2 × 1 + 1 = 3
n = 2 रखने पर, दूसरा पद a2 = 2 × 2 + 1 = 5
n = 3 रखने पर, तीसरा पद a3 = 2 × 3 + 1 = 7
यहाँ पर a = 3, सार्वान्तर d = 5 – 3 = 2
सूत्र an = a + (n – 1)d से,
श्रेढ़ी का 7 वाँ पद a7 = 3 + (7 – 1)2
= 3 + 6 × 2
= 15
अतः श्रेढी का 7 वाँ पद = 15
प्रश्न 6.
किसी समान्तर श्रेदी केn पदों का योग n(2n – 1) है, श्रेढ़ी का प्रथम पद, सार्वान्तर एवं श्रेढी ज्ञात कीजिए।
हल
दिया है, समान्तर श्रेढ़ी के n पदों तक योगफल,
Sn = n(2n – 1) = 2n2 – n
n = 1 के लिए, प्रथम पद का योगफल S1 = 2(1)2 – 1 = 1
प्रथम पद (a) = 1
n = 2 के लिए, S2 = 2(2)2 – 2 = 8 – 2 = 6
दूसरा पद (a2) = S2 – S1 = 6 – 1 = 5
n = 3 के लिए, S3 = 2(3)2 – 3 = 18 – 3 = 15
तीसरा पद (a3) = S3 – S2 = 15 – 6 = 9
अतः श्रेढ़ी 1, 5, 9,…………
सार्वान्तर d = 5 – 1 = 4 तथा प्रथम पद a = 1.
प्रश्न 7.
श्रेढ़ी 21, 18, 15,…….. का कौन-सा पद -81 है? क्या इस श्रेढी का कोई पद शून्य है? यदि है तो कौन-सा पद?
हल
दी गई A. P. : 21, 18, 15,……..
पहला पद (a) = 21 तथा सार्वान्तर (d) = 18 – 21 = -3
माना nवाँ पद -81 है
nवाँ पद = -81
⇒ a + (n – 1)d = -81
⇒ 21 + (n – 1) (-3) = -81
⇒ 21 – 3n + 3 = -81
⇒ -3n = -81 – 24 = -105
⇒ n = \(\frac{105}{3}\) = 35
अत: श्रेढ़ी का 35 वाँ पद -81 है।
पुनः माना श्रेढ़ी का n वाँ पद शून्य है।
n वाँ पद = 0
⇒ a + (n – 1)d = 0
⇒ 21 + (n – 1) (-3) = 0
⇒ 21 – 3n + 3 = 0
⇒ -3n = -24
⇒ n = 8
अत: श्रेढ़ी का 8 वाँ पद शून्य है।
प्रश्न 8.
2 अंकों वाली कितनी संख्याएँ 3 से विभाज्य हैं?
हल
2 अंकों वाली संख्याएँ जो 3 से विभाज्य हैं :
12, 15, 18,…, 99
स्पष्ट है कि ये संख्याएँ समान्तर श्रेढ़ी में हैं जिसके लिए
a = 12 तथा d = 15 – 12 = 3, l = 99
माना संख्याएँ n हैं।
l = a + (n – 1)d
⇒ 99 = 12 + (n – 1)3
⇒ 3(n – 1) = 99 – 12 = 87
⇒ n – 1 = \(\frac{87}{3}\) = 29
⇒ n = 29 + 1 = 30
अत: 2 अंकों वाली 30 संख्याएँ हैं जो 3 से विभाज्य हैं।
प्रश्न 9.
0 से 50 के मध्य कितनी सम संख्याएँ हैं? उनका योगफल ज्ञात कीजिए।
हल
0 से 50 के मध्य सम संख्याएँ 2, 4, 6, 8,…, 48 तक माना n संख्याएँ हैं।
यहाँ a = 2 तथा d = 4 – 2 = 2
nवाँ पद = 48
⇒ 2 + (n – 1)2 = 48
⇒ 2 + 2n – 2 = 48
⇒ 2n = 48
⇒ n = 24
0 से 50 के मध्य 24 सम संख्याएँ होंगी।
24 संख्याओं का योगफल = \(\frac{24}{2}\) [2 × 2 + (24 – 1)2]
= 12 × 2(2 + 23)
= 24 × 25
= 600
दीर्घ उत्तरीय प्रश्न
प्रश्न 1.
एक आदमी पहले दिन ₹ 32, दूसरे दिन ₹ 36 तथा तीसरे दिन ₹ 40 बचाता है। यदि वह अपनी बचतों को इसी क्रम में जारी रखता है, तो कितने दिनों में उसकी कुल बचत ₹ 2000 होगी?
हल
पहले दिन बचत a1 = ₹ 32
दूसरे दिन बचत a2 = ₹ 36
तीसरे दिन बचत a3 = ₹ 40
a2 – a1 = 36 – 32 = 4
a3 – a2 = 40 – 36 = 4
अन्तर नियत है
बचत समान्तर श्रेढ़ी में हैं।
प्रथम पद (a) = a1 = 32 तथा सार्वान्तर (d) = 4
माना उसकी बचत n दिनों में ₹ 2000 होगी।
Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
⇒ 2000 = \(\frac{n}{2}\) [2 × 32 + (n – 1)4]
⇒ 2000 = \(\frac{n}{2}\) × 2[32 + (n – 1)2]
⇒ 2000 = n[32 + 2n – 2]
⇒ 2000 = 30n + 2n2
⇒ 2n2 + 30n – 2000 = 0
⇒ n2 + 15n – 1000 = 0
⇒ n2 + (40 – 25)n – 1000 = 0
⇒ n2 + 40n – 25n – 1000 = 0
⇒ n(n + 40) – 25(n + 40) = 0
⇒ (n + 40)(n – 25) = 0
यदि n + 40 = 0 तो n = -40 असम्भव
(क्योंकि दिनों की संख्या ऋणात्मक नहीं हो सकती)
यदि n – 25 = 0 तो n = 25
अत: आदमी की बचत 25 दिनों में ₹ 2000 होगी।
प्रश्न 2.
श्रेढ़ी 18, 15, 12, …….. का कौन-सा पद -87 है? क्या इस श्रेढ़ी का कोई पद शून्य है? यदि हाँ, तो कौन-सा पद?
हल
दी हुई श्रेढ़ी 18, 15, 12, ……
पहला पद (a) = 18 तथा सार्वान्तर (d) = 15 – 18 = -3
माना n वाँ पद -87 है।
n वाँ पद = -87
⇒ a + (n – 1)d = -87 [∵ n वाँ पद = a + (n – 1)d]
⇒ 18 + (n – 1)(-3) = -87
⇒ 18 – 3n + 3 = -87
⇒ -3n = -87 – 18 – 3 = -108
⇒ n = \(\frac{108}{3}\) = 36
अत: श्रेढ़ी का 36 वाँ पद -87 है।
पुनः माना श्रेढ़ी का nवाँ पद शून्य है।
nवाँ पद = 0
⇒ a + (n – 1)d = 0
⇒ 18 + (n – 1) (-3) = 0
⇒ -3(n – 1) = -18
⇒ n – 1 = \(\frac{18}{3}\) = 6
⇒ n = 6 + 1 = 7
अत: श्रेढ़ी का 7 वाँ पद शून्य है।